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the structure factors for |Fy| and |F_| separately but
it seems simpler to use (4a) to obtain an ‘experimental’
value of |F|} by applying a correction for the dispersion
of the observed values of S, z.e. to Sy=34{|F4|}+|F-|3}.
In making this correction we use the calculated factors
at the given stage of the refinement, and we have

|F|§=8,—20,(444 +BBa) — (6 + )43+ B3) .  (5)

Thus it is neither |F.|, nor |F_|, nor S,* but the
quantity |F|, defined by (5) which must be alloted a
phase by an ordinary structure factor calculation and
used as a coefficient in Fourier series calculation of the
true electron density in the crystal.

If this same value |F|, is used in constructing the
difforence vector in least-squares analysis, the normal
equation matrix will be in exactly the same form as for
a non-dispersive crystal. In the earlier stages of the
refinement it is probable that S,* will be an adequate
approximation to [F|, but in the later stages when the
essential features of the structure are precisely defined
it will be necessary to calculate a new set of values |F|,
between each stage of refinement of the positional,
thermal, and scale parameters.

In making the correction (5) the tabulated values
(Dauben & Templeton, 1955; Templeton, 1962) of
4f; and Afy can be used. It is suggested however that
parameters corresponding to J, and J, may be introduced
into the least-squares treatment of structures for which
accurate intensity measurements have been made, as
for instance in a full matrix correlating §, and J, with
the scale factor and an overall temperature factor.
In this way, experimental values for the dispersion
constants may be obtained (¢f. Parthasarathy, 1962).
Further details of such procedures must await exper-
imental test.

In the case of a centrosymrmetric crystal (5) reduces to

|F[§ =8, — 26,440 — (6} + 8)AF . (6)

For rock salt with Cu K« radiation the correction in
(6) reaches 189, for the plane (311) for the ‘all odd’
reflections and 109 (640) for the ‘all even’ reflections;
with Mo K« the corresponding figures are 7% (331) and
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49, (880) respectively. The larger part of these corrections
comes from Af” but the correction due to Af” is not
negligible.

In the case of several dispersive atoms the above
argument is readily generalized (Bijvoet, 1962). If
Ay, By, dyr, 65 are the structure factor components and
dispersion constants of the rth dispersive element, and
other notation is unchanged, the expression (3) becomes

|Fy|2=A%+B?+23 8,,(AA4, + BB;) — 20 3 8,/(ABy — BA,)
T r

+ 3 3 (617015 + O9r005)(ArAs + BrBs)

7,8
=03 3 (817005 — 01500 )(ArBs — AsBy) . (7)
7S
From this result, expressions for S, D, and the correction
for S, can easily be written down.

While we wish to emphasize strongly the importance
of the corrections for dispersive effects in both Fourier
and least-squares analyses we hold no particular brief
for the methods which we have suggested for carrying
out these corrections, since there are many other ways
of doing this.

Thanks are due to eighteen colleagues, who were good
enough to comment on & first draft of this note, for the
clarifications which they suggested; but particularly I
wish to thank Drs Jenny P. Glusker, Dick van der Helm
and Carroll K. Johnson for assistance in calculations and
for discussions which helped in the original formulation.
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On the weighting of reflexions in least-squares calculation of non-cubic unit-cell dimensions.
By B. R. Lawn, Department of Physics, University of Western Australia, Western Australia

(Received 16 May 1963)

It is well known that extrapolation for non-cubic cell
dimensions inherently requires that weight be allocated
to individual hkl reflexions in accordance with the par-
ticular parameter being determined. This is usually
practised to some extent in graphical extrapolation but
not in the more sophisticated ‘least-squares’ techniques
developed by Cohen (1935), Hess (1951) and others.
Hess has made provision in the ‘least-squares normal
equations’ to include a weighting term W, which is the
product of two factors, W(6) and W(s). These respec-
tively take into account the influence of Bragg angle 6

and the accuracy of the linear film distances s upon the
ultimate precision of cell dimensions.

With the advent of high-speed computers the objection
to lengthy computations associated with the analytical
procedures no longer arises. It is therefore little extra
trouble to incorporate a third weight factor W(hEI)
into W, which facilitates k, k, [ weighting. In establishing
such a factor it is desirable that certain boundary
conditions be satisfied. For instance, consider the follow-
ing expression for hexagonal cells, the terms retaining
their conventional meaning:
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4 sin? /A% =4(h2 +hk + k?%)/3a® +12/c?.

hkO lines render a exempt from any error in the term
containing ¢ whereas 00! lines are completely independent
of a. This implies W, (hk0) =1, W,(00!) =0.

The following is the simplest expression which complies
with the two above extreme specifications and is
adaptable to the general hkl reflexion:

4(h? + Rk +k2)/3a2
4(h® + ik + k2)/3a% + 12/c®

Wahkl) =

a is then determined by solving the ‘normal equations’
weighted with W =W(s). W(0). Wg(hkl). Parameter ¢ is
obtained similarly. It will be noted that at least a crude
approximation to c¢/a is presupposed.

Table 1. Cell parameters a and c of f-Agl,
with standard error, using various W functions

Film Cohen (4)

1 4-59085+0-00056
7:50358 + 0-00092

2 459217+ 0-00031
7:50764 + 0-00051

3 4594004 0-00029
7-50894 + 0-00048

Hess (4)

4-59063 + 0-00039
7-50363 + 0-00064

4-59196 + 0-00025
7-50789 + 0-00041

4-59381 +0-00016
7-50943 + 0-00027

4-59346 + 0-00022
7-51192 4+ 0-00037

4-59415 + 0-00030
7-51096 + 0-00049

4:59355 1+ 0-00015
7-51325 + 0-00024

4-59324 +0-00014
7-51195 + 0-00024

4-59327 +0-00014
7-:51000 + 0-00022

4:59401 + 0-00020
7-51181 4 0-00033

4:59340 + 0-00023
7-50947 + 0-00039

Modified (A)

4-59059 + 0-00038
7-50281 +0-00105

4-59190 + 0-00021
7-50818 + 0-00059

4-59376 £.0-00014
7-50912 + 0-00036

4-59346 + 0-00022
7-51261 + 0-00036

4-59405 + 0-00033
7-51086 + 0-00033

4-59355 +0-00012
7-51448 + 0-00041

4:59324 +0-00013
7-51279 + 0-00039

4-59329 +0-00012
7-50960 + 0-00027

4-59398 + 0-00019
7-51229 1+ 0-00049

4-59337+0-00017
7-51008 + 0-00072

4  4-59341+0-00041
7-51153 + 0-00068

5  4-50415+0-00042
7:51079 + 0-00069

6  4-59371 +0-00026
7-51320 + 0-00042

7 459326+ 0-00022
7-51160 + 0-00036

8  4-59311+0-00023
7-51033 + 0-00038

9  4-59420+0-00034
7-51150 + 0-00055

10 4-59357 £ 0-00045
7-50924 + 0-00074

As a test of the function W, data from ten powder
photographs of hexagonal g-Agl, taken at temperatures
ranging from 30 °C to 150 °C, were in turn subjected to
the Cohen, Hess and modified weighting procedures,
extrapolating against the Nelson-Riley function and
setting W(s)=1 for all lines. The problem was coded
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in FORTRAN II language for solution on an IBM 1620
computer. Results are illustrated in Table 1. Although
the Hess method yields consistently smaller standard
errors than does that of Cohen, there is no further
significant overall reduction resulting from the modified
scheme. However, an unsatisfactory feature of the
Cohen and Hess methods, the identity of the relative
errors in both @ and ¢, does not arise with the modified
procedure. In the exposures tested there were no 00!
lines and an average of only 5 observations in about 20
were more favourable to a ¢ extrapolation. Furthermore,
these were generally found to be faint and therefore of
comparatively poorer quality. It is to be expected that
the relative error in ¢ will exceed that in a, as is indeed
reflected by the trend of the standard errors listed in
Table 1.

The various weighting systems may be examined for
sensitivity by removing (a) hkO reflexions (average of, 5
per film) or (b) all reflexions favouring ¢ extrapolation.
It would be desirable that situation (a) have no effect
on parameter ¢ and (b) very little effect on a. Table 2
summarizes the result of such an analysis with the
Hess and Modified systems.

Table 2. Results of sensitivity test

Average change in ¢
as a result of (a)

0-00061 A
Zero

Average change in a
as a result of (b)

0:00006 A
0-00003

Hess
Modified

The latter is found to be more insensitive to the absence
of reflexions unfavourable to extrapolation for a par-
ticular cell dimension.

The above proposed weighting system is readily
applicable to orthorhombic and higher-symmetry crystals,
which comprise the practical limit for powder X-ray
diffraction. Extension to lower symmetries in which
the angles become variables is difficult owing to the
appearance of cross terms in the expression for cell
parameters.

The author is indebted to Dr E.N. Maslen and Mr
S. R. Hall for discussions. The latter is at present working
on weighting functions for lower-symmetry crystals in
conjunction with single-crystal techniques.
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